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The Capacitances and Surface-charge Distributions of a

shielded Balanced pair

JOHN D. NORDGARD

Abstract—The capacitance matrix of a straight pair of uniform
wires symmetrically placed in a shield is determined theoretically.

Exact expressions for the elements of the capacitance matrix
are determined as psrticuku elements of the inverse of an infinite
matrix which relates the Fourier coefficients of the surface-charge
densities on the inner conductors and the shield to the applied
voltage excitations on the cable conductors. If the wire diameter is
small relative to the wire separation, and if the wire separation is
small relative to the shield diameter, then accurate numerical
approximations for the elements of the capacitance matrix are ob-
tained to any degree of accuracy by suitably truncating the infinite
matrix.

Once the elements of the capacitance matrix are determined, then
the distributions of the surface-ch=ge densities on the peripheries
of the inner conductors, and the shield are determined for any
arbitrary excitation of the cable structtire. In particular, the various
capacitances associated with the cable structure, e.g., the direct,
ground, and mutual capacitances, are determined from a comparison
of the surface-charge densities resulting from a “balanced” excita-
tion and a “longitudhul’$ excitation.

The Fourier coefficients of the surface-charge densities are re-

quired to determine the propagation parameters and the associated

propagation modes of the cable structure. The surface-charge

distributions are evaluated numerically for a typical standard pro-

duction cable using 22-gauge wires.

The 1results of this paper will be extended by a perturbational

method to include twisted wires in a shield; also, certain types of

asymmetries in the cable geometry will be considered. Hence, the

propagation constants and the associated propagation modes of un-

balanced snd/or twisted shielded pair cables can also be determined.

I. INTRODUCTION

THE capacitance matrix (per unit length in the axial

direction) is determined for a straight pair of wires in

a shield. The capacitance matrix relates the Fourier coeff-

icients of the surface-charge densities on the inner con-

ductors and the shield to the voltage excitations applied

to the cable conductors.

Once the elements of the capacitance matrix are deter-

mined, then the distributions of the surface-charge densi-

ties on the peripheries of the inner conductors and the

shield are determined for any arbitrary excitation of the

cable structure. These Fourier coefficients can be used to

determine the propagation parameters and the associated

propagation modes of the cable structure. The method

for doing so, together with applications, will be presented

in a forthcoming paper.
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In previous papers on this subject [11-[3], only the

various capacitances associated with the cable structure,

e.g., the direct, ground, and mutual capacitances, were

determined. These capacitances were determined indirectly

from a consideration of only the case of “balanced” or

“longitudinal” excitation, without directly calculating the

Fourier coefficients of the various surface-charge densities

involved.

For balanced or longitudinal excitation, the cable struc-

ture and the resulting electrostatic potential distribution

within the shield are symmetric about a line passing

through the axis of the shield perpendicular to the center

line of the wires; and, therefore, the surface-charge densi-

ties on the inner conductors are images of each other. The

general case of arbitrary excitation can be expressed as

the appropriate superposition of a balanced excitation and

a longitudinal excitation; however, the use of the afore-

mentioned symmetry argument is not invoked in this

study since the results of this study are to be applied

later to the case of a lossy unbalanced twisted shielded-

pair cable for which the “propagating” modes are no

longer the balanced and longitudinal modes.

In this paper, the previous methods for determining

the elements of the capacitance matrix are extended so

that the Fourier coefficients of the surface-charge densities

on the peripheries of the inner conductors and the shield

are also determined. In the process of obtaining the

Fourier coeilicients of the various surface-charge densities,

the various capacitances, associated with the cable struc-

ture are also determined. In addition, the voltage excita-

tions on the inner conductors and the shield are assumed

to be completely arbitrary; however, the cable structure

itself is constrained to be symmetric about the axis of the

shield, i.e., the wires are symmetrically located about the

axis of the shield and have the same radii.
The surface-charge densities on each wire and the shield

are functions of only the azimuthal angles describing the

circumferences of each wire and the inner circumference

of the shield, and are expanded in Fourier series in these

azimuthal angles. The resulting electrostatic potential dis-

tribution within the cable structure is also represented in

a Fourier series in these azimuthal angles.

The Fourier coefficients of the electrostatic potential

distribution are related by Laplace’s equation to the

Fourier coefficients of the surface-charge densities on the

inner conductors and the shield. The solution of Laplace’s

equation, subject to the boundary conditions impressed by
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the applied voltage excitations on the cable conductors,

gives rise to an infinite matrix which relates the Fourier

coefficients of the surface-charge densities to the applied

voltage excitations on the inner conductors and the shield.

Exact expressions for the elements of the capacitance

matrix are then determined as particular elements of the

inverse of the infinite matrix. If the wire radius is small

relative to the wire spacing and if the wire spacing is small

relative to the shield radius, then accurate numerical ap-

proximations for the elements of the capacitance matrix

are obtained to any degree of accuracy by suitably trun-

cating the infinite matrix.

This solution for the case of an untwisted cable will be

used later as the zeroth-order solution in a perturbational

analysis to, determine the corresponding results for the

twisted cable. Also, the model will be extended to include

certain types of asymmetries in the cable geometry. Hence,
, the results of this paper can also be applied to numerically

evaluate the propagation parameters and the associated

propagation modes of unbalanced and/or twisted shielded-

pair cables.

II. CABLE GEOMETRY

The geometry of the cable is shown in Fig. 1. The cable

consists of two strai~ht spatially separated cylindrical

inner conductors embedded in a simple insulator (i.e., a

linear, homogeneous, isotropic, and time-invariant me-

dium), which are enclosed by a conducting annular shield.

It is assumed that the centers of the wires aie spaced

equidistantly at a distance .s on the same line from the

center of the shield. It is assumed that the wires are of

the same circular cross section with radius ~ and are com-

posed of the same conducting materials. The dielectric in

which the wires are embedded completely surrounds each

wire and extends uniformly out to the inner radius A of

the annular shield. The dielectric is determined by its

constitutive parameters e and w It is assumed that the

conductivities of each wire and the shield are infinite and

that conductivity of the dielectric is zero. These conduc-

tivity assumptions, when used to determine the surface-

charge distributions on the various conductors, can be

Fig. 1. Cross section of the shielded-pair cable,
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shown to be reasonable and do not significantly affect the

accuracy of the solution in the frequency range of interest

in this study,

Dimensional restrictions are imposed on t!he parameters

of the cable to keep the three conductors of the structure

from touching, i.e., let

S>6

A> s+&

111. THEORY

In a cylindrical coordinate system (p,p,,z), let a surface-

charge density a be distributed over the cylinder p = PO,

— co < z < + w. Assume that the surface-charge density

u is not a function of the axial variable z, so that it may

be represented by its Fourier series expansion in the azi-

muthal angle p, i.e., let

where ~,, q,, and .$Oare the Fourier coefhcients of the ex-

pansion, and XOis a normalization constant.

Due to the axial symmetry, the potential @satisfies the

transverse Poisson equation

v@ = – :Ua(p – Po)
e

where the transverse Laplacian V? in a cylindrical coordi-

nate system is

Then,

where [4]

@(j),$o I u) = -

L J

and p< and p> are, respectively, the lesser and the greater

values of POand p.

Since each conductor is described by its own local co-

ordinate system, each coordinate system with a cliff erent

polar origin (see Fig. 1), several coordinate transforma-

tions are required to provide a complete solution which

satisfies all the boundary conditions at the surfaces of

each conductor.
Consider, then, a translated cylindrical coordinate sys-

tem (r,13,z), with polar origin at p = c, p = O, and initial

line p = O, where c > po. The potential@ in the transverse

plane (rlO) due to the” surface-charge density u trans-

forms to
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I

J(r,e;c
@=

J(r,o;c

where [4]

(T),

a),

r<c —po

r > C’+po
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<, COS 1’!9 – v, Sk 1’0
.

L 1
and [4]

{LCOS (L + 1’)8+7, Sh (L+ L’)e
.

L 1

where the binomial coefficient @is defined by

,B,,=( L–l+h!
(L– 1)!1’! “

Similarly, consider a translated cylindrical. coordinate sys-

tem (r, O,z), with polar origin at p = c, p = O,

line p = O, where c < po. The potential @ in

verse plane (r,13) due to the surface-charge

transforms to

‘1

r<c

@ = +(?”,e;c I u)

r<po —c

where [4]

and initial

the trans-

density u

r, cm Jo + q, sin 1’0
.

1 1
where the combinatorial coefficient y is defined by

‘!/’1!

’71’= (t– /)!’

IV. APPLICATION

In terms of their local cylindrical coordinate systems,

let the surface~charge density on each wire (referred to as

conductor 1 or 2) denoted by the superscript ‘ or “, and

the surface-charge density on the shield (referred to as con-

ductor 3) denoted without ‘a superscript, be expanded as

~(.”.l=
~+ [co{’”+ ~ (c’{””.Cos,()[.”.

+~,l.”.sin’el-”.)]
L=I

~= *A[s0 +i (s, cos L’P+ t, sin w) ]
‘=1

k ‘S” and so,s,,t, are the Fourier coefficientswhere Co’,’’, c,’,”, ,

of the expansions, and AOis a normalization constant.

It is assumed that the inner conductors are excited

with the voltages VI and Vj, and that the shield is excited

with the voltage V3, such that

v{: = Vo’uo{ ‘“

V3= Vouo

where uO’,‘t and UOare the Fourier coefficients of the ex-

pansion, and VO is a normalization constant.

Referring to Fig. 1, let ~j% denote the potential on the

conductor (j) due to the surface-charge density on the

conductor (k).

Therefore, on wire 1,

VI = % + % + 013 ,,

where

% = 0(6,8’ I u’) \

*I.Z = $(6,0’; –2s I u“)

*I3 = V(a,o’; –s I a).

Similarly, on wire 2,

where

% = @(t$,O”; 2s I u’)

%, = 0(6,0” I u“)

%3 = 97(6,0”; s / a).

Also, on the shield

V3 = CE’31 + @3.z + 033

%2 = ?(A,q; –S I d’)

@33= @(A,p I u),

Superposing the various potential terms and equating

them to the values of the voltage excitations for each

value of the index 1 yields an infinite set of equations in

which the Fourier coefficients of the various surface-

charge densities are the unknowns [4]. Notice that, due

to the symmetry, the sine and cosine terms decouple, and

all of the sine coefficients are zero. The final solution for

the infinite sets of Fourier cosine coefficients of the various

surface-charge densities is conveniently represented in

terms of partitioned infinite matrices, i.e., let
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or

where

and

and

C’o =

and

and

D,, =

and

M=

x= _’J~o M_,E

‘h””.

“00 ~ROl R02 R03 . , .-
---- ----- ---- --
C1O \ Dll UIZ Uls

C20 ~ L21 Dz!’2 U23

C30; L31 L32 D33

“1 .

I .
“1 .

“oo=li1
lnl–2. s lnA

in 6 in. A

in A In A

o ()
*’1-

–0
iiil

)

(–) ’(; ‘: o 0

(-)’(:)’: (:)’: o

—

I;(–)”/%

‘~ L

7 (~ = 1,2,3,... )

where

and

and

Also
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0 (–)”7% (–) ’[–) ’’’7”

(–)’?%’ o

1

‘y’, ,

0 0 0

(L,L’= 1,2,3,...), (L’ > ,)

,1-
a, = ()()‘J’ = ‘B”-L : ‘ : “-’:.#_’-

X=
0 (–) ’’”P” (–) ’’”-7L’

‘L’ o 1OTL,,

0 0 0

(o’ = 1,2,3,... ) and

1

(–)’?% “Y’

1— ‘y, , (i= 1,2,3,... )
L E=

‘yo-

jyl

X2

X3

.

.

.

co’

0

0

0 ‘
.
.
.

where

[

cc’

where X’ = c,”

.s,

[1
Uo’

co = ~olt V,, and O = [0].

Z&l
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If the ratio of the wire diameter relative to the wire

separation is small and if the ratio of the wire separation

relative to the shield diameter is small, then the off-

diagonal terms in the matrix M, which contain products

of various powers of these ratios, decay away from the

main diagonal of the matrix. Also for the same reasons,

the terms on the main diagonal of the matrix M decay

(from upper left to lower right) along the main diagonal

of the matrix. Therefore, only those terms in the first few

partitions (beginning at upper left) are significant in the

matrix M. Accurate approximations to the inverse of the

infinite matrix M are obtained by truncating the infinite

matrix to a square matrix. which contains’ only the signifi-

cant terms in the infinite matrix.
Therefore, approximate expressions for the Fourier co-

efhients of the various surface-charge densities are deter-

mined for any desired degree of accuracy.

V. CAPACITANCE DEFINITIONS

The corresponding line-charge densities X{ 1 (per unit

length in the axial direction) due to the applied voltages

, V{; on wires 1 and 2 are determined by -

f /

2T
~{)= ~dla{:. =po dqnl .“.

o

where IS’,” are the resulting surface-charge densities on

wires 1 and 2. In terms of the Fourier coefficients of the

surface-charge densities

A{; = Xocof ;”. , ,
Therefore, the various line capacitances can be expressed

in terms of the Fourier coefficients as

=koQ’ =—~~~mll–l

V1=VO v! V,=v,

v 2=0 V2=0

=Ao$ = –1
V2 V,=o

—2?rem22
V1=O

V2=J70 V2=V0

and

V2=0 V2=0

where mll–l,mlz–l,m21–l, rn22–1 are the terms of the first

2 X 2 partition of the inverse M–$ of the matrix M.

By reciprocity y, CIZ = Czl; and, by symmetry, CU = CZ~.

The line capacitance Cd directly between the wires 1s

defined by

Cd = ‘Cl, = ‘C,l

and the line capacitance Cg to ground is. defined by

c, = Cll + cl, = C22 + C21.
Also, the mutual line capacitance Cm is defined by

CH– cl, CM– C21
cm=cd+~cg= ~ = z .

.

VI. RESULTS

The foregoing theoretical results are now applied to

determine the Fourier coefficients of the surface-charge

densities on the inner conductors and the shield and the

various capacitances associated with the cable structure

for a realistic cable geometry with various impressed volt-

age excitations. In particular, both balanced and longitudi-

nal voltage excitations on a typical standard production

cable using 22-gauge wires are considered. The pertinent

geometrical parameters for this cable are shown to scale

in Fig. 2.

This cable is an equivalent shielded-pair model for one

pair of a 50-pair PIC cable manufactured by Western

Electric. In the actual cable, a thin annular layer of insula-

tion surrounds each” wire and the space between the

insulation and shield is filled with air and other pairs of

the 22-gauge PIC wires. The insulations and air spaces

have different dielectric constants; however, for simplicity,

this~ inhomogeneous dielectric between the wires is re-

placed ~-ith an equivalent homogeneous dielectric.

The effective relative perrnittivit y of an equivalent uni-

form dielectric surrounding the 22-gauge wires, as deter-

mined indirectly from a method based on previous’ capaci-

tance measurements, is

Table I contains the values of the capacitance to ground,
the direct capacitance, and the mutual capacitance, in

addition to the four elements of the capacitance matrix,

for the cable geometry described previously.

Tqbles II and III contain the first ten Fourier cosine

coefficients of the surface-charge densities on the inner

conductors and the shield for the cable geometry and the

voltage excitations described previously.

Figs. 3 and 4 contain plots of the surface-charge densi-

ties on the inner conductors and the shield, as constructed

from their Fourier coefficien~s, for the cable geometry and

the voltage excitaticms already described.

~ig. 2. Cross section of a cable using 22-gauge wires.
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TABLE I

CAPACITANCE MATRIX FOR22-GAUGE WIRE (F/M)

T

Cll 0.775(-10)

C12 -0.226(-10)

Czl I
-0.226(-10)

C22
I

0.775(-10)

cd
I

0.226(-10)

TABLE II

FOURIER COSINE COEFFICIENTS FOR 22-GAUGE WIRE AND BALANCED
EXCITATION (F/M)

o

1

2

3

k

5

6

7

8

9

WIRE 1 1

-O.1OCC934O(-O9)

-0.3004381 7(-1 o)

-o.1393731i?(-lo)

-o.33C8571 6(-11)

-0.94407503(-12)

-0.24911 336(-12)

-0.6564531 2(-1 3)

-0.1?376892(-13)

-0.46111371 (-14)

-0.12255239(-14)

WIRE 2

0,1W09340(-03)

-0.3034381 7(-1 o)

0.13937212(-10)

-0.35035;6( -11)

0.94407503(-12)

-0.24811 335(-1 2)

0.65645312(-13)

-0,17378892( -1 3)

0.46111371 (-14)

-0.1225521 9(-1 4)

IALANCEO EXCITATII

SHI ELO

-0.1 6263032 (-1 8)

-0.12726578(-09)

-0.271 C&54(-19)

-0.1 34C5334(-1 o)

-0.67762$35(-20)

-0,14941702(-11)

-0.847C32Y(-21)

-0.17531177(-12)

-0.15881 867(-21 )

-0.21428396(-13)

TABLE III

I’OURIER COSINE COEFFICIENTS FOR 22-GAUGE WIRE AND
LONGITUDINAL EXCITATION (F/M)

IWX WIRE 1 WIRE 2 SHIELO

0 0.548941 68(-1 O) 0.546941 66(-1 O) .O.1C978833(-03)

1 -O. 27595980 (-1 O) o. 27595980 (-1 o) -0.21684043(-l@)

2 -0.4947C636( -11) -0.49471X36( -11 ) -0.321 68844( -1 O)

3 -0.1 3874647( -11 ) 0.13874647 ( -11) -0.67762635(-20)

k -0.30369676 ( -12) -0.30369678 (-1 2) -0.44165031 (-1 1)

5 -0.6863%28 (-1 3) 0.68629928( -1 3) -0.2541 0966( -20)

6 -0.1 4829190(-1 3) -0.148291 90(-1 3) -0.5S428940(-12)

7 -0.31145136 [-14) 0.31145136(-14) -0.21175623(-21)

8 -0.6201 7627( -1 5) -O.62O1 7626(-15) -0.75566652(-13)

9 -0.11322906(-15) 0.113229C6(-15) AO. 26469779(-22)

, .-.,,. ,., -,.,., .+,. ,. ..,-,
LUYUIIWIIV!L LAti!lflll L’!

VII. DISCUSSION

The results of this theoretical analysis were compared

to the results obtained from a purely-numerical analysis

ofthisproblem using afield-mapping program. Inparticu-
lar, the first ten Fourier coefficients Of the surface-charge

densities onthewires andtheshield were compared. The

zeroth-order Fourier coefficients on the shield agreed to

three significant digits, Which represents a discrepancy of

less than 0.5percent; tbezeroth-order coefficients on the

wires agreed to two significant, digits, which represents a

discrepancy oflessthan l. Opercent. Forthe higher order

coefficients the errors increased somewhat; however, the

errors in the higher order coefficients are less significant,

since the coefficients decay monotonically with increasing

indices, roughly, one order of magnitude per index, and

are negligible’in comparison to the zeroth-order coefficients.

After an examination of Table I, it is fourld that the

capacitance to ground, the direct capacitance, and the

mutual capacitance agree with previously measured data.

For example, the mutual capacitance Cm of 0.11500 pF/m

is approximately 1.0 percent greater than the measured

value of 0.0495 pF/m.
After an examination of Tables II and III, it is found

that the Fourier coefficients of the surface-charge densities

on the inner conductor~ are greater for the case of balanced

excitation than for the case of longitudinal excitation,

since the potential difference between the wires is zero

for longitudinal excitation. For these special cases of ex-

citation, the resulting surface-charge densities are even

functions of the azimuthal angles describing the circum-

ferences of each conductor; and, therefore, the Fourier

I a(xr67cwl/m’)

}

///” ~

/ \
.5

.----””
“~ -

- -—- WIRE2

.1-
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Fig. 3. Surface-charge density versus azimuthal angle for 22-gauge
wire and balanced excitation.
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Fig. 4. Surface-charge density versus azimuthal angle for 22-gauge
wire and longitudinal excitation.
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sine coefficients are zero. Notice that on the shield the

even harmonics are negligible (zero) for the case of bal-

anced excitation and the odd harmonics are negligible

(zero) for$hecase oflongitudinal excitation; this condi-

tion of alternating zero harmonics is imposed by the

horizontal and vertical symmetry (or antisymmetry) of

the cable and the excitation.

VIII. CONCLUSIONS

In this paper, the capacitance matrix of a straight pair

of wires in a shield was determined theoretically. The

Fourier coefficients of the surface-charge densities on the

inner conductors and the shield and the various capaci-

tances associated with the cable structure were then deter-
mined. The’ cable structure was constrained to be symmet-

ric about the axis of the shield; however, the voltage

excitation was completely arbitrary. Therefore, both bal-

anced and longitudinal “excitations were considered. The

theoretical results were evaluated-numerically for the case

of a typical standard ‘production cable using 22-gauge

wires.

The Fourier coefficients of the ‘surface-charge densities

are required in a recently developed method for determin-

ing the propagation parameters and the associated propa-

gation modes of the cable, for either the straight or the

twisted case, and for either a balanced or an unbalanced

geometry.

The results of this paper for the case of a straight pair

of wires in ? shield will be compared to the results obtained

in a subsequent paper for the case of a twisted pair of

wires in a shield. Also, the model will be extended to

include certain types of asymmetries in the cable geometry.
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