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The Capacitances and Surface-Charge Distributions of a
Shielded Balanced Pair

JOHN D. NORDGARD

Abstract—The capacitance matrix of a straight pair of uniform
wires symmetrically placed in a shield is determined theoretically.

Exact expressions for the elements of the capacitance matrix
are determined as particular elements of the inverse of an infinite
matrix which relates the Fourier coefficients of the surface-charge
densities on the inner conductors and the shield to the applied
voltage excitations on the cable conductors. If the wire diameter is
small relative to the wire separation, and if the wire separation is
small relative to the shield diameter, then accurate numerical
approximations for the elements of the capacitance matrix are ob-
tained to any degree of accuracy by suitably truncating the infinite
matrix.

Once the elements of the capacitance matrix are determined, then
the distributions of the surface-charge densities on the peripheries
of the inner conductors and the shield are determined for any
arbitrary excitation of the cable structire. In particular, the various
capacitances associated with the cable structure, e.g., the direct,
ground, and mutual capacitances, are determined from a comparison
of the surface-charge densities resulting from a ‘‘balanced” excita-
tion and a “longitudinal” excitation.

The Fourier coefficients of the surface-charge densities are re-
quired to determine the propagation parameters and the associated
propagation modes of the cable structure. The surface-charge
distributions are evaluated numerically for a typical standard pro-
duction cable using 22-gauge wires.

The 'results of this paper will be extended by a perturbational
method to include twisted wires in a shield; also, certain types of
asymmetries in the cable geometry will be considered. Hence, the
propagation constants and the associated propagation modes of un-
balanced and/or twisted shielded pair cables can also be determined.

I. INTRODUCTION

HE capacitance matrix (per unit length in the axial

direction) is determined for a straight pair of wires in
a shield. The capacitance matrix relates the Fourier coeffi-
cients of the surface-charge densities on the inner con-
ductors and the shield to the voltage excitations applied
to the cable conductors.

Once the elements of the capacitance matrix are deter-
mined, then the distributions of the surface-charge densi-
ties on the peripheries of the inner conductors and the
shield are determined for any arbitrary excitation of the
cable structure. These Fourier coefficients can be used to
determine the propagation parameters and the associated
propagation modes of the cable structure. The method
for doing so, together with applications, will be presented
in a forthcoming paper.
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In previous papers on this subject [1]-[3], only the
various capacitances associated with the cable structure,
e.g., the direct, ground, and mutual capacitances, were
determined. These capacitances were determined indirectly
from a consideration of only the case of ‘“balanced” or
“longitudinal” excitation, without directly calculating the
Fourier coefficients of the various surface-charge densities
involved.

For balanced or longitudinal excitation, the cable struc-
ture and the resulting electrostatic potential distribution
within the shield are symmetric about a line passing
through the axis of the shield perpendicular to the center
line of the wires; and, therefore, the surface-charge densi-
ties on the inner conductors are images of each other. The
general case of arbitrary excitation can be expressed: as
the appropriate superposition of a balanced excitation and
a longitudinal excitation; however, the use of the afore-
mentioned symmetry argument is not invoked in this
study since the results of this study are to be applied
later to the case of a lossy unbalanced twisted shielded-
pair cable for which the “propagating” modes are no
longer the balanced and longitudinal modes.

In this paper, the previous methods for determining
the elements of the capacitance matrix are extended so
that the Fourier coeflicients of the surface-charge densities
on the peripheries of the inner conductors and the shield
are also determined. In the process of obtaining the
Fourier coeflicients of the various surface-charge densities,
the various capacitances.associated with the cable struc-
ture are also determined. In addition, the voltage excita-
tions on the inner conductors and the shield are assumed
to be completely arbitrary; however, the cable structure
itself is constrained to be symmetric about the axis of the
shield, i.e., the wires are symmetrically located about the
axis of the shield and have the same radii.

The surface-charge densities on each wire and the shield
are functions of only the azimuthal angles describing the
circumferences of each wire and the inper circumference
of the shield, and are expanded in Fourier series in these
azimuthal angles. The resulting electrostatic potential dis-
tribution within the cable structure is also represented in
a Fourier series in these azimuthal angles.

The Fourier coefficients of the electrostatic potential
distribution are related by Laplace’s equation to the
TFourier coefficients of the surface-charge densities on the
inner conductors and the shield. The solution of Laplace’s
equation, subject to the boundary conditions impressed by
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the applied voltage excitations on the cable conductors,
gives rise to an infinite matrix which relates the Fourier
coefficients of the surface-charge densities to the applied
voltage excitations on the inner conductors and the shield.

Exact expressions for the elements of the capacitance
matrix are then determined as particular elements of the
inverse of the infinite matrix. If the wire radius is small
relative to the wire spacing and if the wire spacing is small
relative to the shield radius, then accurate numerical ap-
proximations for the elements of the capacitance matrix
are obtained to any degree of accuracy by suitably trun-
cating the infinite matrix.

This solution for the case of an untwisted cable will be
used later as the zeroth-order solution in a perturbational
analysis to determine the corresponding results for the
twisted cable. Also, the model will be extended to include

certain types of asymmetries in the cable geometry. Hence, .

the results of this paper can also be applied to numeriecally
evaluate the propagation parameters and the associated
propagation modes of unbalanced and/or twisted shielded-
pair cables.

II. CABLE GEOMETRY

The geometry of the cable is shown in Fig. 1. The cable
consists of two ‘straight spatially separated cylindrical
inner conductors embedded in a simple insulator (i.e., a
linear, homogeneous, isotropic, and time-invariant me-
dium), which are enclosed by a condueting annular shield.
It is assumed that the centers of the wires are spaced
equidistantly at a distance s on the same line from the
“center of the shield. It is assumed that the wires are of
the same circular cross section with radius é and are com-
posed of the same conducting materials. The dielectric in
which the wires are embedded completely surrounds each
wire and extends uniformly out to the inner radius A of
the annular shield. The dielectric is determined by its
constitutive parameters ¢ and p. It is assumed that the
conductivities of each wire and the shield are infinite and
that conductivity of the dielectric is zero. These conduc-

tivity assumptions, when used to determine the surface--

charge distributions on the various conductors, can be

Fig. 1. Cross section of the shielded-pair cable.
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shown to be reasonable and do not significantly affect the
accuracy of the solution in the frequency range of interest
in this study.

Dimensional restrictions are imposed on the parameters
of the cable to keep the three conductors of the structure
from touching, i.e., let

§> 46
A>s+4.

III. THEORY

In a cylindrical coordinate system (p,¢,2), let a surface-
charge density o be distributed over the cylinder p = py,
— o <z < 4o, Assume that the surface-charge density
o is not a function of the axial variable z, so that it may
be represented by its Fourier series expansion in the azi-
muthal angle ¢, i.e., let ‘

o=

A ' ©
2 - [Eo + 3 (¢.cos wp + 7. 8in. Lga)]
PO

=1

where ¢, 1., and & are the Fourier coeflicients of the ex-
pansion, and ), is a normalization constant.

Due to the axial symmetry, the potential ® satisfies the
transverse Poisson equation

1
Vi® = — -606(p — po)

where the transverse Laplacian V2 in a cylindrical coordi-
nate system is

yp=10, 0 198
T el peg
Then,
® = &(p,e|0)
where [4]
' 1 © p "
d(p,0|0) = — o M[Eolnlb -3X ('5>
2Me =1 \P>

¢ co8 1o + 7, sin up]
¢

and p< and p> are, respectively, the lesser and the greater
values of py and p.

Since each conductor is described by its own local co-
ordinate system, each coordinate system with a different
polar origin (see Fig. 1), several coordinate transforma-
tions are required to provide a complete solution which
satisfies all the boundary conditions at the surfaces of
each conductor.

Consider, then, a translated cylindrical coordinate sys-

‘tem (7,6,2), with polar origin at p = ¢, ¢ = 0, and initial

line ¢ = 0, where ¢ > po. The potential ® in the transverse
plane (r,8) due to the surface-charge density ¢ trans-
forms to
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J(T,B;c [ 0')7 r<c¢— Po
@ = \
d(rfclo), r>c+po
where [4]
- 1 ]
g(rbic|o) = — 2 ko[iolnul_ﬁoz( ) ()COSL
=1
©w 0 ¢ r v
1525 e (2) ()
=1 /=0 ¢ Y
¢, cos 6 — g, sin L’G]
L
and [4]
cos 8

(050 o) = —lxo[zolnr—s@l( ()

)

.§', cos (v + )6 + 7. sin (¢ 4+ L')O]

2

1YY (-)

©
=1 /=0

where the binomial coefficient 8 is defined by

(v— 14 )

e A

Similarly, consider a translated cylindrical coordinate sys-
tem (r,6,2), with polar origin at p = ¢, ¢ = 0, and initial
line ¢ = 0, where ¢ < py. The potential & in the trans-
verse plane (r,0) due to the surface-charge density o
transforms to

' r<c¢
¢ = y(rdic|o)
. r<p— ¢
where [4]
1 . © ¢ c t 7 i
Vol o) = = 5= do|blm~ 32 X v (Z) (2
=1 /=0 L0 ¢

&ocos 6 -+ g, sin L’ﬁ]

2

where the combinatorial coefficient vy is defined by

J/0
(e — )t

1V. APPLICATION

by =

. In terms of their local cylindrical coordinate systems,
let the surface-charge density on each wire (referred to as
conductor 1 or 2) denoted by the superscript ’ or 7/, and

the surface-charge density on the shield (referred to as con- -

ductor 3) denoted without a superscript, be expanded as

. Ao ® . . . .
ol = 5_6[00 + 2 (et cos B 4 KU sin B1) ]
=1
o [s<) + Z (s, cos 1o + . sin 1) ]

=1

where ¢,»" ¢, "’,k/" "and so,s,t, are the Fourier coefficients

of the expansions, and )\, is a normalization constant.

It is assumed that the inner conductors are excited
with the voltages Vi and V5, and that the shield is excited
with the voltage V3, such that

Vi = Vouo!™
Vs = Voue

where uo+"’ and u, are the Fourier coefficients of the ex-
pansion, and ¥V, is a normalization constant.

Referring to Fig. 1, let &; denote the potential on the
conductor (j) due to the surface-charge density on the
conductor (k).

Therefore, on wire 1,

Vi= &y + By + @i
where
b = B0 | o) N
By =V(5,0; —25| ")
By = V(505 —s|0).
Similarly, on wire 2,
Vy = ®Pgy + Poy + P

where

g
[

F(5,07; 25 | o)
By = B(5,0" | o)
&y = V(5,0"; 5] 0).
Also, on the shield
V= &y + P + Py
where
| By =¥ (Ap;s| )
&y = V(Ap; —s| o
$33 = B(A,0 | 7).

Superposing ‘the various potential terms and equating
them to the values of the voltage excitations for each
value of the index ¢ yields an infinite set of equations in
which the Fourier coefficients of the various surface-
charge densities are the unknowns [47]. Notice that, due
to the symmetry, the sine and cosine terms decouple, and
all of the sine coefficients are zero. The final solution for
the infinite sets of Fourier cosine coefficients of the various
surface-charge densities is conveniently represented in
terms of partitioned infinite matrices, i.e., let
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1
— — ANMX = VoE
2me .
or
X = —ZWeK)Mﬂl.E
Ao
where .
O™ { R* R R% ]
o ipn e opm
M=|C® | [» D= Uy
Cao i L3t L3 D3
|
|
L | 4
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Iné In|—2s| InA
0% ={1n|2s] Ins 1n_A
In A In A In A
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[ s\'1 |
0 — pu—
<28> L 0
d\1
CY® = e[ —}) = =128 ¢
( ) (28) . 0 O b (" y 737 )
s\'1 s\'1
) () G
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0 (=) (=)
1
R = — 2% 0 e |,
0 0 0
("I = 15233:"')
and
- (—)LLEt "YL
1 - _ .
D+ = _—2_ (=)t - Yl (0 =123,)
B ~ 1
o, ‘a, -
. L_

and

0 (=)Y 8w
1 .
Uu’ _ 5 (__)L LBL' 0
0 0
(L7l', = 17273)...
and
0 (=) B
1 .
Lu/= .._5 (__)t Lﬁl‘, 0
(_)L—L/ L&‘-, c&,',
("?"I = 1;273;"')!
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- s\ /6\1
o = B, = —_ Z
B g (28) (28) L
v — ¢ (i)L <§)"1
Y= A s L
and
S\ /s\"1
e == ¢ o= - ot
n= (A> <A) t
and
wernen (Y0
o, = a, = PBu_\ N
A A
Also
x0T
Xl
¢’
X2
X = , where X' =]c¢/
X°
S¢
and
"o
(0]
uo’
(0]
E = , where C° =] /' |V, and
0]
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(W >0)
0
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0
(¢ < 4)
0 = [0].
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If the ratio of the wire diameter relative to the wire

separation is small and if the ratio of the wire separation

relative to the shield diameter is small, then the off-
diagonal terms in the matrix M, which contain products
of various powers of these ratios, decay away from the
main diagonal of the matrix. Also for the same reasons,
the terms on the main diagonal of the matrix M decay
(from upper left to lower right) along the main diagonal
of the matrix. Therefore, only those terms in the first few
partitions (beginning at upper left) are significant in the
matrix M. Accurate approximations to the inverse of the
infinite matrix M are obtained by truncating the infinite
matrix to a square matrix which contains only the signifi-
cant terms in the infinite matrix.

Therefore, approxunate expressions for the Fourier co-
efficients of the various surface-charge densities are deter-
mined for any desired degree of accuracy.

V. CAPACITANCE DEFINITIONS

The corresponding line-charge densities Al (per unit
length in the axial direction) due to the apphed voltages
 Vigon wires 1 and 2 are determined by

AMi = fdl"“ =P0/ deoa'™”
(o} 0

where ¢',” are the resulting surfaoe—charge densities on
wires 1 and 2. In terms of the Fourier coefﬁments of the
surface-charge densities

1

=Nl

Therefore, the various line capacitances can be expressed
in terms of the Fourier coefficients as

)\1 ¢’
C11 = N = —2memyy!
Vl Vi=Vo V1 Vi=Vo
Vo=0 Va=0
RZ ¢ 1"
Cop = — = Ng— = —2memg !
V2 Vi=0 V2 Vi=0
Ve=Vo Va=Vo
and
)\1 Co’
C]z = — = N = —27!'67)’!,12_1
Ve V1=0 V2 Vi=0
Vo=Vo Vo=Vo
s co’t
Cn=— = Ao = —2memy
Vl Vi=Vo Vl Vi=Vo
Vo=0 V=0

where mymye Mo mey ! are the terms of the first
2 X 2 partition of the inverse M~! of the matrix M.
By reciprocity, Ci» = Cy; and, by symmetry, Cii = Ca.
The line capacitance Cy4 dlrectly between the eres is
defined by

Cy = —Cp = —Cyn

and the line capacitance C, to ground is. defined by-

Cg = Cu + CIZ = sz + 021-
Also, the mutual line capacitance C,, is defined by

_ Cu - 012 — 022 e 021

Cm:Od—i_%Cg 2 2

VI. RESULTS

The foregoing theoretical results are now applied to
determine the Fourier coefficients of the surface-charge
densities on the inner conductors and the shield and the
various capacitances associated with the cable structure
for a realistic cable geometry with various impressed volt-
age excitations. In particular, both balanced and longitudi-
nal voltage excitations on a typical standard production
cable using 22-gauge wires are considered. The pertinent
geometrical parameters for this cable are shown to scale
in Fig. 2.

This cable is an equivalent shielded-pair model for one
pair of a 50-pair PIC cable manufactured by Western
Electric. In the actual cable, a thin annular layer of insula-
tion surrounds each wire and the space between the
insulation and shield is filled with air and other pairs of
the 22-gauge PIC wires. The 1nsulatlons and air spaces
have different dielectric constants; however, for sunphclty,
thiss inhomogeneous dielectric between the wires is re-
placed with an equivalent homogeneous dlelec‘prlc

The effective relative permittivity of an equivalent uni-
form dielectric surrounding the 22-gaguge wires, as deter-
mined indirectly from a method based on prev1ous capaci-
tance measurements, is

e = 2.026.

Table I contains the values of the capacitance to ground
the direct capacitance, and the mutual capacitance, in
addition to the four elements of the capacitance matrix,
for the cable geometry desecribed previously.

Tables IT and IIT contain the first ten Fourier cosine
coefficients of the surface-charge densities on the inner
conductors and the shield for the cable geometry and the
voltage excitations described previously.

Figs. 3 and 4 contain plots of the surface-charge densi-
ties on the inner conductors and the shield, as constructed
from their Fourier coefficients, for the cable geometry and
the voltage exmtatlons already described.

Fig. 2. Cross section of a cable using 22-gauge wires.
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TABLE I .
CAPACITANCE Matrix For 22-Gavee Wire (F/m)
' C11 0,775(~10)
» <y ~0.226(-10)
Cgl -0.226(-10)
022 0,775(-10)
Cd. 0.226(-10)
G, 0.549(~10)
c, 0.500(-10)
TABLE I

Fourier CosiNg COEFFICIENTS FOR 22-Gauge WIRE AND BALANCED

ExcrraTion (F/m)

INDEX

WIRE 1

WIRE 2

SHIELD

-0.10009340(-09)
-0.30043817(-10)
-0,13937212(~10)
-0,35085716(-11)
-0.94407508(-12)
-0,24811336(-12)
-0.65645312(-13)
-0.17378892(-13)
-0.46111371(-14)

" -0.24811335(-12)

-0.12255213(-14)

0,10009340(-03)
~0,30043817(-10)
0,13937212(-10)
-0,35085716(-11)
0.94407508(-12)

0.65645312(-13)
-0,17378892(~13)
0.46111371 (-14)
-0,12255219(-14)

-0.16263032(-18)
-0.12726578(-09)
-0,27105054(-19)
-0,13405334(-10)
~0.67762635(-20)
-0,14941702(-11)
-0,84703294(-21)
-0.17531177(-12)
-0,15881867(-21)
-0,214283%(-13)

BALANCED  EXCITATION

TABLE III
Fourier CosiNge COEFFICIENTS FOR 22-GaUGE WIRE AND

LoNGITUDINAL Excrration (F/m)

INDEX

WIRE 1

WIRE 2

SHIELD

0.54894168(-10)
-0.27595980(~10)
-0.49470636(-11)
1-0,13874647(-11)
-0.30369678(-12)
-0.68629928(-13)
-0.14829190(-13)
-0,31145136(~14)
-0.62017627(~15)
~0.11322906(-15)

0.54894168(-10)
0.27595980(~10)
-0.49470636(~11)
0,13874647(-11)
-0.30369678(-12)
0.68629928(-13)
-0,14829190(-13)
0.31145136(-14)
-0.62017626(~15)
0.11322906(-15)

~0,10978833(~09)
-0.21684043(~18)
-0.32168844(-10)
~0,67762635(~20)
~0,44165031(~11)
-0.25410988(~20)
-0,58428940(~12)
-0,21175823¢-21)
~0,75566852(~13)

20,26469779(-22)

LONGITUDINAL  EXCITATION

VII. DISCUSSION

The results of this theoretical analysis were compéred
to the results obtained from a purely numerical analysis
of this problem using a field-mapping program. In particu-
lar, the first ten Fourier coefficients of the surface-charge
densities on the wires and the shiéld were compared. The
zeroth-order Fourier coefficients on the shield agreed to
three significant digits, which represents a discrepancy of
less than 0.5 percent; the zeroth-order coefficients on the
wires agreed to two significant digits, which represents a
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discrepancy of less than 1.0 percent. For the higher order
coefficients the errors increased somewhat; however, the
errors in the higher order coefficients are less significant,
since the coefficients decay monotonically with increasing
indices, roughly, one order of magnitude per index, and
are negligible in comparison to the zeroth-order coefficients.

After an examination of Table I, it is found that the
capacitance to ground, the direct capacitance, and the
mutual capacitance agree with previously measured data.
For example, the mutual capacitance C,, of 0.0500 pF/m
is approximately 1.0 percent greater than the measured
value of 0.0495 pF/m.

After an examination of Tables II and III, it is found
that the Fourier coefficients of the surface-charge densities
on the inner conductors are greater for the case of balanced
excitation than for the case of longitudinal excitation,
since the potential difference between the wires is zero
for longitudinal excitation. For these special cases of ex-
citation, the resulting surface-charge densities are even
functions of the azimuthal angles describing the circum-
ferences of each conductor; and, therefore, the Fourier

7
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Fig. 3. Surface-charge density versus azimuthal angle for 22-gauge
wire and balanced excitation.
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Fig. 4. Surface-charge density versus azimuthal angle for 22-gauge
wire and longitudinal excitation.
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sine eoefficients are zero. Notice that on the shield the
even harmonies are negligible (zero) for the case of bal-
anced excitation and the odd harmonics are negligible
(zero) for the case of longitudinal excitation; this condi-
tion of alternating zero harmonics is imposed by the
horizontal and vertical symmetry (or antisymmetry) of
the cable and the excitation.

VIII. CONCLUSIONS

In this paper, the capacitance matrix of a straight pair

of wires in a shield was determined theoretically. The

Fourier coefficients of the surface-charge densities on the
inner conductors and the shield and the various capaci-
tances associated with the cable structure were then deter-
mined. The cable structure was constrained to be symmet-
ric about the axis of the shield; however, the voltage
excitation was completely arbitrary. Therefore, both bal-
anced and longitudinal excitations Weré considered. The
theoretical results were evaluated numerically for the case
of a typical standard production cable using 22-gauge
wires. ‘ 1

The Fourier coefficients of the surface-charge densities
are required in a recently developed method for determin-
ing the propagation parameters and the associated propa-
gation modes of the cable, for either the straight or the
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twisted case, and for either a balanced or an unbalanced
geometry. :

The results of this paper for the case of a straight pair
of wires in a shield will be compared to the results obtained
in a subsequent paper for the case of a twisted pair of
wires in a shield. Also, the model will be extended to
include certain types of asymmetries in the cable geometry.
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